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Abstract

The understanding of landscape controls on the natural variability of hydrologic pro-
cesses is an important research question of the PUB (Predictions in Ungauged Basins)
initiative. Quantitative landscape ecology, which aims at understanding the relation-
ships of patterns and processes in dynamic heterogeneous landscapes, may greatly5

contribute to this research effort by assisting the coupling of ecological and hydrological
models.

The present paper reviews the currently emerging rapprochement between ecolog-
ical and hydrological research. It points out some common concepts and future re-
search needs in both areas in terms of pattern, process and function analysis and10

modelling. Focusing on riverine landscapes, the interrelation between ecological and
hydrological processes are illustrated. Two further complementary examples show how
both disciplines can provide valuable information for each other. I close with some vi-
sions about promising (landscape) ecological concepts that may help advancing one of
the most challenging tasks in catchment hydrology: Predictions in ungauged basins.15

1 Introduction

Landscape ecology and catchment hydrology, both disciplines deal with patterns and
processes as well as their interactions and functional implications on a variety of scales
(Turner, 2005b; Sivapalan, 2005). Thus, it is reasonable to study the interplay between
ecological and hydrological patterns and processes and to seek for mutual possibili-20

ties to assist either discipline in dealing with their respective research questions. Each
discipline has developed its own theories and methodologies; an interdisciplinary ap-
proach assembles the respective benefits and simultaneously provides an alternative
viewpoint on the same complex system: landscapes. In the following, the terms land-
scape and catchment are used interchangeably, but the first represents the ecological25

the latter the hydrological perspective.
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In this context, patterns are defined as observations exhibiting a spatial or temporal
structure that is significantly different from a random process realisation. These pat-
terns contain information on the mechanisms which they emerge from (Grimm et al.,
2005). Processes are understood as the interactions of different objects in an environ-
ment. Function, however, has different meanings in environmental sciences, denoting5

either processes, roles, services or the “functioning” of a whole system with perspec-
tives focusing either on the performance of specific objects or on their importance for a
specific system (Jax, 2005).

Based on hierarchy theory and further developments, landscapes have been re-
ferred to as complex adaptive systems, in which patterns at higher levels emerge from10

localised interactions at lower levels (Levin, 1998). Complexity arises from the inter-
play between intraspecific and interspecific biotic interactions and from different abiotic
constraints and interacting driving forces and disturbances – all of them acting on a
hierarchy of spatial and temporal scales. The understanding of these complex inter-
actions, the identification of the underlying driving forces and the reliable prediction15

of resulting system’s responses are the main objectives of environmental research.
In this context, a typical area of landscape ecological research is the analysis of the
effect of spatiotemporal resource distribution on the persistence, distribution and rich-
ness of species (e.g. Wiens, 2002a). Catchment hydrology typically focuses on the
understanding of the effect of the spatiotemporal distribution of soil and topographical20

properties on the soil moisture pattern or on the runoff response (e.g. Wilson et al.,
2005). Both objects of interest, species, soil moisture, and runoff, represent specific
landscape functions that control for example nutrient cycling or productivity.

Thanks to the substantial methodological advances in the area of observation (e.g.
remote sensing), analysis (e.g. geographical information systems, spatial statistics),25

and modelling (e.g. digital terrain modelling, physically-based simulation modelling),
the availability of computer power and the development of theories no longer ne-
glecting space (Kareiva, 1994), ecologists as well as hydrologists turned to a spatial
paradigm – considering spatial and spatiotemporal patterns, relationships, and pro-
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cesses (Grayson and Blöschl, 2000a).
Accordingly, recent scientific questions in landscape ecology and hydrology focus on

the interactions of patterns and processes and their functional implications. Not only
catchment hydrologists but also landscape ecologists apply modelling approaches to
tackle this task. Based on their respective theoretical backgrounds (cf. Beven, 2002;5

Reggiani and Schellekens, 2003; Wiens, 2002b; Levin, 1992), phenomenological mod-
els are used for pattern descriptions whereas simulation models are used for process
description and pattern generation in an adaptive cycle of inference – i.e. formulating,
testing, and rejecting hypotheses on the basis of comparisons between observed and
simulated patterns (Holling and Allen, 2002). Recent developments in ecological and10

hydrological modelling emphasize the use of multiple patterns providing insight into dif-
ferent aspects of the studied system for model building and calibration (Grimm et al.,
2005; Wiegand et al., 2004; Beven, 2006).

The present paper reviews the currently emerging rapprochement between ecolog-
ical and hydrological research. It points out some common concepts and future re-15

search needs in both areas in terms of pattern, process and function analysis and
modelling. After presenting some already realised or realisable collaborations, I close
with some visions regarding promising concepts from (landscape) ecology that may
help advancing one of the most challenging tasks in catchment hydrology: Predictions
in ungauged basins (PUB).20

2 Interplay between ecology and hydrology

The interplay between ecological and hydrological research commences on different
levels and scales. Several studies present a growing number of emerging rapproche-
ments between ecological and hydrological research in different fields, such as ecohy-
drology (cf. these special issues: Wassen and Grootjans, 1996; Wilcox and Newman,25

2005; Gurnell et al., 2000; Zalewski, 2002; Baird et al., 2004) or riverine landscape
ecology (Stanford, 1998; Tockner et al., 2002; Ward et al., 2002b; Poole, 2002). Today,
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ecohydrology emerges as a new interdisciplinary field or even paradigm (Hannah et al.,
2004; Bond, 2003; Rodriguez-Iturbe and Porporato, 2004).

2.1 Landscape ecology and catchment hydrology

Landscape ecologists describe heterogeneity in landscapes in terms of two concepts:
patch-matrix and gradients (e.g. Turner et al., 2001; Wagner and Fortin, 2005). The5

first relates to island-biogeography (MacArthur and Wilson, 1967) and metapopula-
tion theory (Hanski and Gilpin, 1997), the second to niche theory (Hutchinson, 1957)
and community ecology (e.g. Austin, 1985). Patches are defined depending on the
scale and the research question (Addicott et al., 1987); they differ in patch quality, their
boundaries affect flows of energy, material, and species; patch context matters, and10

composition and configuration of patches affect local and regional processes (Wiens,
2002a).

Wu and Levin (1997) describe ecological systems as hierarchical dynamic mosaics
of patches (cf. Poole et al., 2004). Local patch dynamics can constitute shifting mosaics
– so-called mosaic cycles – if the patches exhibit similar but out-of-phase dynamics15

(e.g. Olff et al., 1999; Remmert, 1991; Watt, 1947). Unsurprisingly, this kind of shifting
landscape mosaics is also found in hydrologically controlled systems (Bornette and
Amoros, 1996; Malard et al., 1999; Latterell et al., 2006).

Riverine landscape ecology continues the success story of the landscape ecological
framework focusing on the interface of terrestrial and aquatic systems (Ward et al.,20

2002a; Tockner et al., 2002). According to Wiens (2002a), all relevant concepts derived
from landscape ecological theory can be exemplified within riverine landscapes - and
vice versa, riverine systems provide good opportunities to test this theory.

Since organisms determine the structure and functioning of landscapes (Covich
et al., 2004), many landscape ecologists follow an organisms-centred perspective (e.g.25

Wiens et al., 1993). One aim of quantitative landscape ecology is the understand-
ing of species-habitat relationships and the prediction of the spatio-temporal species
distribution by means of habitat modelling. Species habitat selection is controlled by
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environmental resources on a hierarchy of spatial and temporal scales (Mackey and
Lindenmayer, 2001). On small scales, selective forces are mainly biotic interactions
like predation and competition; on larger scales, the abiotic environment and related
disturbance regimes are more important (Biggs et al., 2005). Keddy (1992) describes
landscapes as a hierarchy of environmental filters (see also Diaz et al., 1998; Lavorel5

and Garnier, 2002): To join a local community, species in a regional species pool must
possess appropriate functional attributes (i.e. species traits) to pass through the nested
filters. Only those species, the habitat requirements of which match the abiotic and bi-
otic habitat conditions build the community that is encountered in a given landscape.
This concept was originally proposed to assembly rules in vegetation community ecol-10

ogy but it is just as well applicable in riverine landscapes (Poff, 1997; Statzner et al.,
2004).

A common landscape ecological framework illustrated in the top half of Fig. 1 ac-
cording to Wiens (2002a) is applied to catchment hydrology (bottom half) to pinpoint
their common ground. Composition/configuration (Turner, 1989) and structure/texture15

(Vogel and Roth, 2003) are scale-independent concepts and have to be characterised
depending on the scale considered.

Analogue to landscape ecology, the description of spatial patterns is a prerequisite to
improve the understanding of hydrological processes in catchment hydrology and thus
to yield better predictions for the right reasons (Grayson and Blöschl, 2000b). Rele-20

vant spatial patterns are related to terrain, soil, biota and their respective interactions
(Sivapalan, 2005).

2.2 Riverine landscapes – examples for the interaction between ecological and hy-
drological processes

2.2.1 Effect of hydrological patterns and processes on ecological features25

There is a multitude of examples showing the effects of hydrological patterns and pro-
cesses on ecological features, and riverine landscapes shall provide the most obvious
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examples here. For instance, Naiman and Decamps (1997) as well as Ward et al.
(2002b) review the ecological diversity of riparian zones. Here, the dynamic environ-
ment supports a variety of life-history strategies and organisms adapted to disturbance
regimes over broad temporal and spatial scales (Lytle and Poff, 2004). These dynam-
ics result in shifting landscape mosaics, which many riverine species rely on and have5

become adapted to (Ward and Tockner, 2001). As Robinson et al. (2002) point out, the
migration of many species is tightly coupled to the temporal and spatial dynamics of the
shifting landscape mosaic. Tabacchi et al. (1998) review how vegetation dynamics are
influenced by the hydrological disturbance regime and how in turn, vegetation produc-
tivity and diversity influence riverine biogeochemical and geomorphological processes10

(cf. Burt and Pinay, 2005; Gurnell et al., 2001).

2.2.2 Effect of ecological patterns and processes on hydrological features

Again, literature is full of examples showing the effects of ecological patterns and pro-
cesses on hydrological features. As an example, Tabacchi et al. (2000) review the
impacts of riparian vegetation on hydrological processes, i.e.: (i) the control of runoff15

by the physical impact of living and dead plants on hydraulics, (ii) the impact of plant
physiology on water uptake, storage and return to the atmosphere, and (iii) the impact
of riparian vegetation functioning on water quality. There are several species, that are
able to change the environmental conditions – so-called ecosystem engineers (Jones
et al., 1994). A prominent example is dam-building beaver, Castor canadensis, whose20

dams have dramatic effects on community structure and ecosystem functioning of en-
tire catchments (Naiman et al., 1988; Wright et al., 2002).
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2.3 Identification of common concepts and common needs

2.3.1 Identification of common concepts

Landscape ecology and catchment hydrology exhibit a set of common notions and con-
cepts. The ecological and hydrological view of landscapes emphasizes the importance
of spatial structure and heterogeneity (Turner, 1989; Grayson et al., 1997; Schulz et al.,5

2006).
Although spatial structure is a core concept for both disciplines, landscape ecologists

– at least in their beginning – and hydrologists apply different approaches to charac-
terise it: Landscape metrics in contrast to spatial statistics and geostatistics. Land-
scape metrics (or landscape pattern indices) focus on discrete spatial variation (O’Neill10

et al., 1988; Gustafson, 1998). The distribution, expected values and variances of many
landscape metrics are not known. Thus, statistical comparisons between multiple ob-
servations of an index are at least challenging (but see Remmel and Csillag, 2003). In
contrast, spatial statistics and geostatistics mainly focus on continuous spatial varia-
tion (e.g. Fortin and Dale, 2005). Due to the fact that a) many variables of ecological15

interest are continuous and represented as gradients, and b) these methods allow for
statistical inference, hypothesis testing, spatial extrapolation, and characterisation of
spatial autocorrelation, spatial statistics and geostatistics are increasingly applied in
quantitative landscape ecology.

Spatial heterogeneity is expressed as gradients or as patchiness and is considered20

as being scale-dependent (Klemes, 1983; Blöschl and Sivapalan, 1995; Delcourt and
Delcourt, 1988). A scale-dependent approach is pivotal since processes that are im-
portant at one scale are not necessarily important at other scales (Sivapalan et al.,
2003a): Dominant processes change with changing scales (Grayson and Blöschl,
2000b). This approach implies the notion of hierarchy to understand complexity (Siva-25

palan, 2005; Wu, 1999; Urban et al., 1987).
Another common concept currently gaining increased attention is connectivity. This

means the functional connectedness between landscape elements like habitat patches
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inhabited by spatially structured populations (Söndgerath and Schröder, 2002; Cottenie
and De Meester, 2003) or between catchments elements (Pringle, 2003) such as hy-
drological flow paths in rivers (Amoros and Bornette, 2002) or spatially-evolving source
areas in drainage lines (Western et al., 2001). Connectivity focuses on horizontal pro-
cesses and thus yields a viewpoint that is qualitatively different from patch-centred5

approaches focusing mainly on vertical processes (Burt and Pinay, 2005). Urban and
Keitt (2001) propose a graph-theoretic perspective to deal with landscape connectivity.

Connectivity – or its counterpart fragmentation – is strongly related to the question
of extinction thresholds in the context of metapopulations (Bascompte and Sole, 1996;
Keitt et al., 1997). If connectivity falls below a critical threshold, dispersal between10

remaining habitats does not suffice in balancing local extinctions (Keymer et al., 2000;
Ovaskainen et al., 2002). Landscape ecologists apply percolation theory (Stauffer and
Aharony, 1991) and neutral landscape models (Gardner et al., 1987) to determine the
relative importance of landscape components and their configuration on the distribution
of populations (e.g. With et al., 1997). Extinction thresholds are one striking example15

for critical thresholds that have drawn the attention of ecologists (e.g. With and Crist,
1995) and hydrologists (e.g. Cammeraat, 2004; Zehe et al., 2005). Critical thresholds
– meaning that small environmental perturbations can produce large, discontinuous
and irreversible changes in ecosystems, landscapes, and communities – are strongly
related to nonlinear dynamics and multiple stable states (May, 1977; Groffman et al.,20

2006) and pose a challenge to prediction and management.

2.3.2 Identification of common needs

Turner (2005a) suggests that both approaches to characterise spatial structure, land-
scape metrics and spatial statistics, should be unified under a general framework for
the representation of spatial heterogeneity. This framework should also encompass25

graph theoretical approaches as proposed by Cantwell and Forman (1993), Reynolds
and Wu (1999) and Urban and Keitt (2001) to represent connectivity-related issues.

Furthermore, there is a common need to find appropriate scaling methods and a
1193
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theory of scaling (Urban, 2005; Sivapalan, 2003). The concept that “scale matters” is
common ground in environmental sciences. Regarding scaling laws and related topics
recent years have seen considerable advances in ecology (e.g. Ritchie and Olff, 1999;
Milne et al., 2002; Keitt and Urban, 2005; Southwood et al., 2006) as well as hydrology
(e.g. Western et al., 2002; Vogel and Roth, 2003) and geomorphology (e.g. Dodds and5

Rothman, 2000). But according to Wiens (1999), we still have only fragments of a
theory of scaling.

A model-based analysis of pattern-process interactions strongly relies upon process-
based simulation models providing the opportunity to carry out virtual experiments
(Peck, 2004; Weiler and McDonnell, 2004). Therefore, pattern comparison is a pivotal10

step to decide how well individual processes are represented (Grayson and Blöschl,
2000a). Moreover, the comparison and resulting discrepancies can provide sugges-
tions for modifications of the model structure and parameters (Grayson and Blöschl,
2000b). Thus, the identification of a set of quantitative, robust, and reproducible meth-
ods for the analysis of spatiotemporal patterns that go beyond classical, non-spatial15

approaches represents a major future challenge for model-based analysis of pattern-
process interactions in landscape ecology and catchment hydrology (Schröder and
Seppelt, 2006). Promising approaches comprise point pattern analysis (e.g. Jeltsch
et al., 1999), spatiotemporal application of entropy (Parrott, 2005; Lischke, 2005) and
wavelet transforms (e.g. Milne et al., 2005).20

Due to the reciprocal effects of abiotic and biotic patterns and processes, disciplinary
approaches can only yield limited insights. We need interdisciplinary studies and com-
plementary perspectives to facilitate a deeper understanding of the multifaceted and
complex interactions between abiotic and biotic patterns and processes acting on mul-
tiple temporal and spatial scales. This may prevent us from inventing the wheel again25

and again. The following section gives examples on how hydrological models help to
improve landscape ecological predictions and how landscape ecological models sup-
port hydrological modelling.
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3 Two complementary examples

3.1 Example I – Hydrology helps landscape ecology

To investigate the ecological consequences and costs of different management
regimes in a semi-natural grassland in Southern Germany, Rudner et al. (2006) applied
an integrated grid-based landscape model: INGRID. The model relates topographic5

and edaphic conditions, dynamics of soil water, evapotranspiration and disturbance
caused by management to species composition. The dynamics of abiotic site con-
ditions – following comparatively simple approaches described in DVWK (1996) and
Allen et al. (1998) – and of disturbances (i.e. annual mowing compared to infrequent
rototilling) were modelled as driving factors for species distribution of more than 5010

plant and insect species in a spatially explicit way (see Schröder et al., 20061, for vali-
dation results of abiotic and habitat models). For 15 plant species, the average amount
of plant available water in April or June was considered as a significant predictor vari-
able for the underlying statistical habitat distribution models predicting species pres-
ence or absence. Figure 2 shows the significant improvement of the performance of15

logistic regression models including this predictor compared to models neglecting it in
terms of two performance criteria: Nagelkerke’s R2 depicts model calibration; the area
under a receiver-operating characteristic curve, AUC, measures model discrimination
(Hosmer and Lemeshow, 2000). Both criteria are calculated after checking for multi-
collinearity and residual spatial autocorrelation as well as internal model validation via20

bootstrapping using R 2.2.0 (http://www.r-project.org) with packages spdep (Bivand,
2002), Hmisc and Design (Harrell, 2001).

Additionally considering hydrological conditions, as represented by the mean amount
of plant available water, yields considerable improvements with respect to model cal-

1Schröder, B., Rudner, M., Biedermann, R., Kögl, H., and Kleyer, M.: Evaluating ecological
consequences of anthropogenic mosaic cycles – a landscape model for quantifying the trade-
off between conservation needs and economic constraints, Basic Appl. Ecol., submitted, 2006.
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ibration and discrimination. As expected, the effect is lower in case of more complex
models considering a higher number of predictors (larger circles in Fig. 2).

3.2 Example II – landscape ecology helps hydrology

The other way round, hydrologists can learn to interpret ecological patterns and use
them either as input data or as additional information for model validation or mea-5

surement network design. Since predictive habitat distribution models (Guisan and
Zimmermann, 2000) quantitatively describe ecological patterns, they have the poten-
tial to improve hydrological model predictions. In analogy to pedotransfer functions
(e.g. Vereecken, 1995), they can be interpreted as habitat transfer functions estimating
the distribution of species or species groups based on habitat selection theory using10

simple landscape properties. For the benefit of hydrological applications, they can be
used to predict the spatial distribution of a) environmental engineers driving hydrolog-
ical processes and affecting hydrological functions or b) bio-indicators for validation of
catchment models.

Evident examples of ecological engineers that affect hydrological (and biogeochemi-15

cal and geomorphological) functions are earthworms, ants, and termites (Lavelle et al.,
1997; Lavelle, 2002). Their endogeic burrows, for instance, result in macroporosity
modifying soil infiltrability and preferential flow and therefore affecting runoff genera-
tion as well as transport and degradation of substances (Wang et al., 1996; Ludwig
et al., 2005; Leonard and Rajot, 2001). Obviously, predicting the diversity and spatial20

distribution of these organisms in a catchment based on soil ecological knowledge and
available data on land use, topography, and soil properties would yield a valuable input
for catchment models or a pivotal complement for measurement network design (Zehe
et al., 2001). Unfortunately, habitat distribution modelling for soil macrofauna is still in
its infancy (but see e.g. Jimenez et al., 2001, who predict the distribution of earthworms25

by geostatistic means).
Vegetation integrates over conditions prevalent over large time scales. Ecologists

have developed some well-established approaches to relate species occurrence and
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composition to abiotic factors. Accordingly, the spatial pattern of vegetation can be
used for hydrological purposes such as the validation of the likelihood of spatial soil
moisture patterns or flood frequencies. An example for such an approach are Ellen-
berg’s (1992) indicator values that relate plant species response to light, temperature,
continentality, soil moisture, soil pH, soil fertility, and salinity on an ordinal scale inte-5

grating over life-span growth conditions (cf. Ellenberg, 1988). Such indicators values
yield an operational knowledge of vegetation response to site conditions, which still
draws considerable attention in the ecological literature (Schaffers and Sykora, 2000;
Diekmann, 2003; Ertsen et al., 1998) as well as hydro-ecological applications (Walden-
meyer, 2002). Hill et al. (2000) suggests a method to extend these indicator values to10

new areas; Schmidtlein (2005) presents an approach to obtain maps of Ellenberg in-
dicator values for soil moisture, soil pH and soil fertility by means of hyperspectral
imaging and partial least squares regression.

Using more advanced statistical methods like generalised linear models (GLM) or
generalised additive models (GAM), “eco-hydrological” species distribution models, i.e.15

habitat models as mentioned above, relate species presence/absence data to environ-
mental conditions by modelling relevant aspects of realised species niches (Olde Vet-
erink and Wassen, 1997; Bio et al., 2002). These kinds of models provide complemen-
tary ecological patterns that can support catchment hydrologists in identifying different
properties of catchment behaviour. De Swart et al. (1994) and Leyer (2005), predict20

for instance plant species responses to water level fluctuations. Applying a similar
approach, Wierda et al. (1997) use plant species as indicators of the groundwater
regime and (Lookingbill et al., 2004) for the prediction of soil moisture levels. Inver-
tebrates show a much faster response to changes in environmental conditions due to
their short life cycle and high mobility. Bonn and Schröder (2001) model the short-term25

micro-spatial distribution of carabid beetles depending on temporary waters together
with related soil conditions and vegetation structure. In combination or alternatively,
multivariate ordination techniques can be applied to analyse entire biotic communi-
ties (Antvogel and Bonn, 2001; Weigel et al., 2003). It is noteworthy that hydrological
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model predictions should not be used as predictors in habitat models if simultaneously
resulting predicted ecological patterns are used for calibrating hydrological models:
one would be trapped in vicious cycles.

The examples above show how each discipline can provide valuable information for
the other, but personally, I expect the most valuable progress from integrated process-5

based models combining cutting-edge ecological and hydrological modelling efforts.
Some recent achievements deal with the topic of vegetation pattern formation. In-
tegrated process-based models set up for different ecological systems, for instance
semi-arid grazing systems (HilleRisLambers et al., 2001), arid ecosystems (Rietkerk
et al., 2002) or bogs (Rietkerk et al., 2004) lead to a more general understanding of10

this fascinating example of self-organisation in ecosystems.

4 Visions for PUB

The task of prediction in ungauged basins (PUB) can be interpreted as a search for
some general catchment transfer functions in combination with methods to assess their
predictive uncertainty (Sivapalan et al., 2003b). We are seeking for a general frame-15

work to identify and represent the spatial heterogeneity in terrain, soil and vegetation
properties controlling hydrological processes and to delineate the dominant patterns
and processes that determine the catchment response. Of course, I do not have an
answer to these questions, but a side-glance at other disciplines could suggest some
analogies and ideas. The following thoughts direct into a plea for classification, which20

often stands at the beginning of scientific engagement and not at its cutting edge; but
requesting a new classification system is not out-of-date in hydrology (Woods, 2002).

In ecology and hydrology, information is limited. Detailed information is often avail-
able at small scales or low hierarchical levels only (hillslopes, single species) but the
most pressing issues occur at larger scales (i.e. the problem of scale, cf. Levin, 1992).25

Therefore, there is a need for upscaling and aggregation. Vegetation ecologists de-
veloped plant functional classification schemes to build models that predict the effect
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of climate and land use change on vegetation and to make generalisations by com-
paring across environments (Gitay and Noble, 1997; Lavorel et al., 1997). In such ap-
proaches, species are aggregated into functional groups considering either response
traits – governing characteristic species response to environmental factors such as
resource availability or disturbance –, or effect traits that determine the species ef-5

fect on ecosystem functions (Lavorel and Garnier, 2002). The advantages of such
an approach are: i) aggregation of species diversity into operational units, ii) transfer-
ability to other landscapes without necessarily having the same species set present,
iii) generality, and iv) concentration on functional aspects. Classification schemes like
this have successfully been used in other fields such as soil ecology (e.g. Brussaard,10

1998) or riverine ecology (e.g. Merritt et al., 2002). Due to the extremely high number
of species, the classification mainly refers to easy-to-measure properties (“soft” traits
like e.g. mean seed number per individual). They serve as proxies for process-related
“hard” traits (like e.g. intrinsic growth rates) that can hardly be measured or estimated
for each species.15

Distributed process-based hydrological models use functional units to represent
catchments (e.g. Becker and Braun, 1999; Zehe et al., 2001). Depending on the un-
derlying blueprint, these functional units that serve as representative elementary areas
can either be hydrotopes, hydrological response units or hillslopes (Wood et al., 1988)
or representative elementary watersheds (Reggiani et al., 1998). Their composition20

and spatial configuration strongly govern the hydrological connectivity and control the
catchment response. If adequately defined, they additionally represent the spatial het-
erogeneity of relevant properties of soil, terrain, and vegetation. Thus, a classification
of these elementary units into functional groups according to their hydrological function
and specific traits may help to provide a general framework (cf. Frissell et al., 1986;25

Snelder and Biggs, 2002). Applying sophisticated methods of pattern description that
can account for connectivity and configuration, this kind of classification can strongly be
improved. As an example, graph-theoretical approaches can offer quantitative informa-
tion on connectivity (Urban and Keitt, 2001). Wavelets transforms can yield integrative
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information regarding spatial and temporal patterns of climatological, hydrological, ge-
omorphological, pedological, and ecological variables on a hierarchy of scales (Kumar
and Foufoula-Georgiou, 1997; Maraun and Kurths, 2004; Lark and Webster, 1999;
Jenouvrier et al., 2005). Both approaches provide information representing promis-
ing catchment traits that may serve as a basis for a general classification scheme of5

catchments to gain a deeper understanding of the relationship between patterns and
processes in catchments and to make better predictions.

5 Conclusions

Landscape ecology and catchment hydrology, both disciplines deal with patterns and
processes as well as their interactions and functional implications on a variety of scales.10

The present paper points out common concepts (such as spatial structure, scale, dom-
inant processes, connectivity, critical thresholds) and identifies common needs, i.e. a
general framework for the representation of spatial heterogeneity, a theory of scaling,
a standard toolbox for the analysis of spatiotemporal patterns, and interdisciplinary ap-
proaches using integrated process-based models. Selected examples demonstrate the15

interplay between ecological and hydrological patterns and processes and how each
discipline can provide valuable information for the other. In analogy to plant functional
classification schemes, I suggest classification into functional catchment groups sup-
ported by sophisticated methods of pattern description regarding multiple traits as a
promising step towards finding general catchment transfer functions that may support20

prediction in ungauged basins.

Acknowledgements. The author would like to thank B. Schaefli and E. Zehe for their valuable
comments and discussions on the manuscript. The development of ideas in this paper was
stimulated by discussion with E. Zehe who thankworthy invited me to the PUB initiative during
the VII. IAHS Scientific Assembly in Foz do Iguaçu, supported by the German Science Founda-25
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Covich, A. P., Austen, M. C., Bärlocher, F., Chauvet, E., Cardinale, B. J., Biles, C. L., Inchausti,
P., Dangles, O., Solan, M., Gessner, M. O., Statzner, B., and Moss, B.: The role of biodiversity
in the functioning of freshwater and marine benthic ecosystems, BioScience, 54, 767–775,
2004. 1189

De Swart, E., van der Valk, A., Koehler, K., and Barendregt, A.: Experimental evaluation of25

realized niche models for predicting responses of plant species to a change in environmental
conditions, J. Veg. Sci., 5, 541–552, 1994. 1197

Delcourt, H. R. and Delcourt, P. A.: Quaternary landscape ecology: relevant scales in space
and time, Landscape Ecol., 2, 23–44, 1988. 1192

Diaz, S., Cabido, M., and Casanoves, F.: Plant functional traits and environmental filters at a30

regional scale, J. Veg. Sci., 9, 113–122, 1998. 1190
Diekmann, M.: Species indicator values as an important tool in applied plant ecology: a review,

Basic Appl. Ecol., 4, 493–506, 2003. 1197

1202

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1185/2006/hessd-3-1185-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1185/2006/hessd-3-1185-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 1185–1214, 2006

Landscape ecology
meets catchment

hydrology

B. Schröder
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und Verlagsgesellschaft Gas und Wasser mbH, Bonn, 1996. 1195

Ellenberg, H.: Vegetation ecology of Central Europe, Cambridge University Press, Cambridge,5

4th edn., 1988. 1197
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Western, A., Blöschl, G., and Grayson, R. B.: Toward capturing hydrologically significant con-
nectivity in spatial patterns, Water Res. Res., 37, 83–98, 2001. 1193
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Fig. 1. A common landscape ecological framework (top half after Wiens, 2002a) and its appli-
cation to catchment hydrology.
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Fig. 2. Improvement of model performance through considering mean content of plant available
water in a set of plant distribution models. Nagelkerke’s R2 depicts model calibration; the
area under a receiver-operating characteristic curve, AUC, measures model discrimination.
Circle size is related to the number of additional predictor variables considered in the logistic
regression models (between one and six).
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